
Growth oscillations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L973

(http://iopscience.iop.org/0305-4470/19/16/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) L973-L978. Printed in Great Britain 

LElTER TO THE EDITOR 

Growth oscillations 

Zheming Cheng and Robert Savit 
Department of Physics, The University of Michigan, Ann Arbor, MI 48109, USA 
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Abstract. We describe an up till now unrecognised phenomenon in kinetic growth models 
which leads to observable oscillations in such quantities as the density and velocity of 
growth. These oscillations, which can occur on length scales of many lattice spacings, 
arise because of an induced incommensuration in the growth mechanism. To illustrate the 
phenomenon, we present results for a particularly simple model, but the phenomenon is 
expected to be quite general and appear in a wide range of growth processes. The essential 
ingredients for the existence of the oscillations are that the growth take place at a reasonably 
well defined interface and that the growth process be discrete (e.g. that the cluster grows 
by the addition of discrete particles of finite size). The growth process is related to a 
functional stochastic iterative map so that the growth oscillations play the role of limit 
cycles. We suggest that the fixed point of this map is related to critical fractal kinetic growth. 

Models of non-equilibrium kinetic growth have recently attracted considerable atten- 
tion (see [ l ]  for a representative sample of work). Many interesting features are 
exhibited by these processes including a wide range of morphologies as well as other 
phenomena associated with singular growth behaviour, such as velocity selection. In 
this letter we describe a new aspect of non-equilibrium growth which we believe applies 
to a very large class of kinetic growth processes. The property we shall discuss leads 
to oscillations in a variety of observable properties of growing systems such as the 
density of the structure and the velocity of the growing interface. Furthermore, our 
treatment of this phenomenon suggests a scenario for understanding a number of other 
features of kinetic growth including certain kinds of fractal growth. 

To most simply describe our growth oscillations, it is useful to consider a specific, 
rather simple kinetic growth model which exhibits these features. It should be borne 
in mind, however, that this phenomenon is expected to apply to a very general set of 
growth processes. (In fact, the growth oscillations we shall describe have also recently 
been observed in ballistic aggregation [2].) The model we will treat is defined as 
follows. Place a seed particle on a site of a two-dimensional square lattice. Occupy 
each nearest neighbour of the seed particle independently with a probability p. Call 
the newly occupied sites the second generation. Occupy each nearest neighbour of a 
second generation particle independently with probability p. Call the newly occupied 
sites the third generation, and so forth. This and related models have a number of 
interesting features which are described in detail elsewhere [3]. For our purposes it 
is only important to note the following. For 1 > p > 0.705 the model grows a structure 
which looks like a diamond with rounded comers along the axes of the lattice and 
intervening straight facets oriented at 45". The facets have an interfacial width of order 
1 as the structure grows, while the rounded sections are rough, with an interfacial 
width growing like N 8 ,  where N is the number of generations for which the structure 
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has grown. For 0.54<p<0.705 the structure grows without facets, albeit with an 
anisotropic shape. For p = 0.54 the growth is marginal and the resulting structure is 
fractal-like, probably a fractal in the universality class of percolation clusters. 

Let us now look in more detail at the behaviour of the growing interface. In 
particular, consider a ray extending out from the centre of the cluster. Let P, , (x)  be 
the probability that a point x along the chosen ray gets occupied exactly at the nth 
generation. Because our growth is stochastic we need to average over many sample 
clusters to compute this quantity. In figure 1 we have plotted P, , (x)  along a ray 
coincident with one of the lattice axes. The growth probability in this case is p = 0.8, 
so that the ray intersects a curved section of the cluster interface. 

0 50 100 150 200 250 
X 

Figure 1. P , ( x )  (in arbitrary units) plotted as a function of x, the distance along a lattice 
axis, averaged over 17 600 samples of the stochastic model grown for 270 generations with 
p = 0.8. The heavy dots, connected for visual clarity by full curves, are those points, P , ( x ) ,  
as a function of x for one value of n. Curves for n =20, 60, 100, 140, 180, 220 and 270 
are shown. The dots are the trails of all values of P , ( x )  for all n G 270 and integer x. 

Because the lattice is discrete, P , ( x )  is defined only for integer x. Each dot (heavy 
or light) represents a value of P , ( x )  for some x and n, for all n S N = 270. The heavy 
dots, connected for visual clarity by full curves, are those points P,,(x) as a function 
of x for one value of n and thus represent the shape of the growing interface at time 
n. Curves for several different values of n are indicated. Notice that while the growing 
interface is relatively narrow (i.e. P,,(x)  extends over ten or so lattice points for a given 
n), the superposition of all the P,,(x)  lie on much broader curves. If we focus our 
attention on the uppermost points in this figure, we see that the maximum value of 
P , ( x )  undergoes rather regular oscillations as a function of n (or of x), apparently 
with a period of about 13 lattice spacings. (As we shall see, the actual nature of the 
periodicity is rather more complicated.) If we think about the meaning of P , ( x ) ,  we 
are led to the conclusion that these oscillations should show up in physically measurable 
quantities, such as the velocity of the interface and the density of the cluster. As we 
shall discuss in a moment, this is indeed the case. However, it is useful to first 
understand qualitatively the origin of the oscillations. 

The oscillations exist because of a hidden built-in incommensuration or beating in 
the problem. Having chosen a value of p < 1, the average growth velocity along an 
axis of the lattice is less than one lattice spacing per generation. (In the case of figure 
1, for example, the average growth velocity is very close to s.) To understand what 
this implies, imagine that there is a "eta' interface profile, Q(x), which is a continuous 
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function of a continuous variable, x, and which merely translates along the x axis with 
n, without changing shapet. The values of Pn(x)  for integer x are the values of Q n ( x )  
for integer x. Since Qn(x) moves a fraction of a lattice spacing each generation, the 
integer values of x will migrate along Qn(x) as n increases, and the trail of these points 
will be as shown in figure 1, resuting in an oscillation of the maximum of Pn(x)  with 
n. 

There are several important comments to make. Firstly, it is clear that this beating 
can result in oscillations over periods of many lattice spacings. Thus a microscopic 
effect can result in oscillations on mesoscopic or macroscopic scales. Secondly, if we 
study P n ( x )  along a direction intersecting a facet, we expect, on the basis of the 
argument above, no growth oscillations since the facet moves one lattice spacing per 
generation. This is what is observed and is discussed in detail in [4]$. Thirdly, we 
expect these growth oscillations to be quite ubiquitous: a little thought reveals that 
what is generically necessary for the oscillations to occur is (i) that the growth proceeds 
by a discrete process (such as the addition of particles of some size to a cluster) and 
(ii) that the growth takes place at a fairly well defined interface. These kinds of 
conditions should occur in a wide variety of kinetic processes and in these processes 
we may expect to see growth oscillations. (The case of off-lattice growth by the addition 
of discrete particles of finite size as well as asynchronous growth is discussed further 
in [4].) 

We have recently undertaken a study of ballistic aggregation and have observed 
growth oscillations in this process also, qualitatively similar to the data plotted in 
figure 1. Details of this calculation will be reported elsewhere [2]. It should also be 
emphasised that the occurrence of growth oscillations is to be understood as a generic 
statement: not all processes obeying these conditions will necessarily show growth 
oscillations (e.g. the facet problem described above) but growth oscillations should be 
common in such processes. To demonstrate that these oscillations produce physically 
observable effects, we have studied the density of the cluster along a lattice axis with 
p = 0.8. In terms of the Pn(x)  plotted in figure 1, the density, p ( x ) ,  averaged over a 
number of simulations may be defined as 

where p is a suitably determined average (constant) value of the density and ~ ( x )  
represents oscillations on top of this constant. We have computed the Fourier transform 
of ~ ( x )  determined from an ensemble of 17 600 simulations grown for 250 generations. 
We find a strong Fourier component in the spectrum of ~ ( x )  corresponding to 
oscillations in one density with a period of 13 lattice spacings and an amplitude of 
about 0.5% of p. In addition, we find several other significant amplitudes corresponding 
to somewhat less pronounced longer wavelength oscillations. Thus the density oscilla- 
tions in this model appear to have a rich multiperiodic structure dominated by a 
fundamental periodicity. This spectrum will be described in more detail elsewhere [4]. 

t For purposes of explanation we assume that the interface profile does not change shape as n increases. 
However, it is clear that there is some widening in P , ( x )  of figure 1 due to stochastic roughening. This 
does not affect the main argument. 
$ The detailed mechanism with which the system deals with the growth incommensuration is elucidated in 
reference [4] in the context of certain deterministic models of growth. There it appears that the average 
growth velocity is a smooth function of p and that small changes in the growth velocity result generally in 
modulations of, for example, the density by small amplitude long wavelength contributions. 
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This Fourier transform represents density variations in an ensemble of small clusters. 
We also expect to see density oscillations in a single larger cluster, which is a more 
common experimental situation. To understand this in the context of our present 
model, we need to note first that the interface of our cluster is rough with an interfacial 
width growing like ns where [3] 0 s 6 s 0.5 for p B 0.7 and 6 < 1 for p > p c .  This means 
that the dispersion of the peak of a density oscillation will grow in the model like n6. 
On the other hand, the period of the oscillations are independent of n since they are 
controlled by the average growth velocity which is independent of n [3,4]. Thus in a 
cluster of linear dimension L, the Fourier amplitude associated with the fundamental 
density oscillation will grow like L'-'. Assuming a background of white noise, we see 
that for 6 < f, the signal-to-noise ratio in a diffraction experiment (or Fourier transform) 
will improve as the linear size of a sample increases, and so density oscillations will 
in principle be observable in single large samples. For cases in which S > f there may 
be an optimum single sample size for observing density oscillations. This is a more 
detailed experimental question which we cannot discuss here. 

These density oscillations, as well as oscillations in the growth velocity, will be 
analysed in more detail elsewhere [4]. Now, however, we want to turn to a brief 
discussion of a deterministic model which, in a certain sense, mimics the average 
behaviour of the stochastic model described above. It is considerably simpler to analyse 
numerically, but shares enough features with the stochastic model to illustrate a number 
of important points. 

Consider the iterative equation 

The first factor on the right-hand side is the growth probability, p. In the second factor 
the product over y is a product over all nearest neighbours of the site x. This factor 
measures the probability that at least one nearest-neighbour site was occupied exactly 
at time n. The last factor measures the probability that the site x has not been occupied 
at any previous time. The dynamics of this equation clearly mimics that of the stochastic 
process although there is no noise in equation (2) and the probabilities are treated as 
independent. If we choose the initial condition 

P l ( X )  = ab) ( 3 )  
which just places a single seed particle at the origin, then equation (2) generates a 
structure with a morphology similar to that of the original stochastic modelt. 

In figure 2 we have plotted P,,(x) for equations (2) and ( 3 )  with p = 0.8 along a 
ray coincident with one of the lattice axes. As in figure 1, we have shown the trail of 
points of P, , (x)  for 1 < n <270 as well as the function P, , (x)  for a few values of n. 
This figure shows the same general oscillatory structure as figure 1. Unlike figure 1, 
we see no broadening of P , ( x )  with n, which is to be expected because there is no 
stochastic noise in equation (2). (Indeed, the width of the interface of the cluster 
grown according to equations (2) and (3) is always 0(1), independent of n.) 

We have also studied the density of this deterministic model, defined as in equation 
(1). Apart from some initial transients, we find that ~ ( x )  has a multiperiodic structure 
with a fundamental period of 37 lattice spacings modulated by longer wavelength 

t In fact, several related deterministic models all generate structures with similar morphologies. The 
connection between these deterministic models and stochastic models will be explained in more detail in [4]. 
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Figure 2.  P , , (x )  (in arbitrary units) plotted as a function of x, ie distance along a lattice 
axis for the iterative map, equation (3),  carried to 270 generations. Each full curve connects 
the points P , ( x )  as a function of x for one value of n. Curves for n =70,  120, 170, 220 
and 270 are shown. The dots are the trails of all values of P , ( x )  for all n 6 270 and 
integer x. 

oscillations with smaller amplitude. As in the stochastic model, the oscillations of the 
density here are about 0.5% of the constant, p. The deterministic map of equation (2) 
therefore has the same qualitative structure as the stochastic model, but is rather 
simpler?. In fact, we have been able to calculate analytically the dotted curves in 
figure 2 [4]. The mathematical relation between the stochastic and deterministic models 
is also quite interesting and will be discussed in detail elsewhere. 

The formulation of a deterministic model like that of equation (2) which has the 
structure of an iterative map suggests that growth oscillations may be thought of as 
limit cycles of a somewhat complicated non-linear map. Thinking about the problem 
in this way one is led to ask a host of questions familiar from the study of non-linear 
dynamical systems, including the dependence of the period of oscillation on p ,  the 
absence or presence of mode-locking, as well as questions concerning the more detailed 
multiperiodic nature of the oscillations and their physical consequences. In reference 
[4] we have been able to partially answer a number of these questions in the context 
of deterministic models of the form of equation (2). 

One may also be led to inquire abut the nature and meaning of a fixed point of 
this iterative map. In this regard an extremely interesting speculation suggests itself 
it is observed, both in this stochastic model and in the deterministic map of equation 
(2), that as p decreases so does the period of the oscillations associated with P, , (x) .  
On the other hand, we know that in these models growth does not proceed for p < p c ,  
where p c  is a critical value at which the growth is marginal and fractal-like. For p s p c ,  
therefore, the growth of the system, thought of as an iterative map, is controlled by 
the trivial functional fixed point of the map, P, , (x)  =0, and the fractal structure of the 
cluster when p = p c  is determined by the rate at which the trivial fixed point is 
approached as n + ~13.  This, then, is the fixed point with which a random kinetic fractal 
is associated. The Hausdorfl dimension and other properties of such clusters can 
therefore be calculated by renormalising the appropriate stochastic iterative map. An 
analysis of the fixed point for the stochastic model considered above, for example, 

t It is also possible to further simplify equation (2) considerably and still maintain the general features of 
growth oscillations. In fact, even a simplified one-dimensional version of equation (2) exhibits growth 
oscillations (see [4] for details). 



L978 Letter to the Editor 

should allow us to calculate explicitly the properties of fractal percolation clusters. 
(In this context we note that we have been able to determine the behaviour of the 
model of equation (2) for p near p c .  Details will be reported elsewhere [4].) 

We believe that the growth oscillations discussed here are likely to be a quite 
ubiquitous phenomenon and should be apparent in kinetic processes in which the 
dynamics builds in some incommensurations or beating in length or timescales. In 
the models discussed here both space and time were discrete, which made the descrip- 
tion of the incommensuration relatively simple. A more common growth process is 
one in which time is not discrete, in the sense that growth events do not take place at 
regular intervals. Nevertheless, we may expect to see growth oscillations in certain 
quantities even in this case. For example, if we imagine a process in which particles 
are added to a cluster in a way which is affected by the local geometry, then if the 
local geometry is shielded on a length scale different from the size of the particles, we 
may expect that, on average, the local geometry will pass through a number of different 
configurations before returning to its original one, thus giving rise, in general, to an 
oscillation in the density. If, on the other hand, the width distribution of time intervals 
between the growth events is very broad, i.e. comparable to or greater than the period 
of the expected growth oscillations, then the growth oscillations in the velocity may 
be quite difficult to observe. 

In summary, the growth oscillations we have described appear to be a very general 
fundamental feature of a wide range of kinetic growth processes. They have been 
observed both in the models studied in this letter and in ballistic aggregation [2]. Our 
discussion has led us to a picture of the kinetic growth of a cluster in terms of iterative 
maps. An important implication of this picture is the suggestion of a method for 
calculating the properties of fractals generated by kinetic growth mechanisms. We 
have also shown that these growth oscillations lead to physical effects which should 
be observable in carefully controlled growth experiments. 

We are grateful to R Baiod and D Kessler for interesting comments and conversations. 
This work was supported by the US Department of Energy under Grant no DE-FG02- 
85ER45 189. 
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